Innovative Postgraduate Education in The Field of Environment Protection: Methods and Tools

MENVIPRO project implementation perspectives in the context of student learning outcomes

Ecogeochemical research of soils in Abovyan park

Grigor Ayvazyan, Vladimir Simonyan Gevorg Ghazaryan, Syuzanna Gharbyan 06 October 2022

Ecologycal passport of Yerevan **Botanical Garden**

Spartak Hovhannisyan, Roza Tadevosyan Mariam Gevorgyan 06 October 2022

Presenters

EN

Spartak Hovhannisyan

Laboratory researcher at Center for Ecological-Noosphere Studies

in Spartak Hovhannisyanyan

O spartak.hovhannisyan@cens.am

Grigor Ayvazyan

Laboratory researcher at Center for Ecological-Noosphere Studies

in Grigor Ayvazyan

grigor.ayvazyan@cens.am

It is an active learning method where students participate in a project while learning. This method makes it possible to identify their strengths and weaknesses.

Project-based interdisciplinary education

Students face real problems during lessons and offer their own solutions

During the project, the participants communicate with specialists from different fields, acquire new skills and acquaintances.

Ecogeochemical research of soils in Abovyan park

Slide 4

Research Object

The object of research is Abovyan Park (Yerevan), which is located at the intersection of Abovyan and Teryan heavy traffic roads and occupies an area of 0.578 ha

Upndju

© OpenSteel CC-BY-SA

0.13 40

0.065

Rininul

RESULTS AND DISCUSSUTION

	DESCRIPTIVE STATISTIC PARAMETERS														
		Cr	V	Ti	Мо	As	Zn	Cu	Co	Fe	Mn	Pb	Ba		
Ν	Valid	6	6	6	6	6	6	6	6	6	6	6	6		
	Missing	1	1	1	1	1	1	1	1	1	1	1	1		
Mean		157.5	86.5	4509.8	4.1	13.6	238.5	77.0	15.9	38882.0	922.2	63.6	450.2		
Median		155.0	86.0	4564.0	4.2	13.4	228.0	67.7	15.9	38698.5	932.5	58.4	456.5		
Std. Deviation		17.5	2.7	147.8	0.8	1.0	59.4	25.5	0.8	2000.1	24.5	35.5	17.4		
Variance		304.7	7.1	21859.4	0.6	1.1	3523.0	648.7	0.6	4000519.5	599.0	1257.9	301.4		
Skewness		.008	.999	-1.480	275	1.121	1.202	.494	-1.038	.443	-1.047	1.368	764		
Std. Error of	Skewness	.845	.845	.845	.845	.845	.845	.845	.845	.845	.845	.845	.845		
Kurtosis		-1.019	.601	1.772	-2.328	2.257	1.940	-1.377	1.366	545	576	3.248	-1.690		
Std. Error of	Kurtosis	1.741	1.741	1.741	1.741	1.741	1.741	1.741	1.741	1.741	1.741	1.741	1.741		
Minimum		133.0	84.0	4243.0	3.0	12.3	172.7	45.9	14.5	36467.0	883.0	21.6	426.0		
Maximum		178.0	91.0	4627.0	4.9	15.4	344.0	111.0	16.6	41909.0	944.0	129.0	466.0		
CV		11.08	3.08	3.28	19.71	7.68	24.89	33.07	4.90	5.14	2.65	55.79	3.86		

	CORRELATION																			
	Deerson Correlation	Cr	v	Ti	Мо	As	Zn	Cu	Со	Fe	Mn	Pb	Ba		NORM	ALITY TEST	-			
Cr	Pearson Correlation	1																		
v	Pearson Correlation	.234	1											Kolmo	ogorov-Smirn	ov	9	Shapiro-Wilk		CLUSTER ANALYSIS
Ti	Pearson Correlation	.039	.688	1										Statistic	df	Sig.	Statistic	df	Sig.	0 5 10 15 20 25
Мо	Pearson Correlation	.513	112	.337	1	L						Cr		.224	6	.200*	.916	6	Cr_log	
As	Pearson Correlation	.358	.018	.254	.127	/ 1						V		.241	6	.200*	.891	6	Cu_log	7
Zn	Pearson Correlation	.628	040	.160	.720	007	1	L				Ti		.287	6	.134	.829	6	Pb log	11
Cu	Pearson Correlation	.958	.099	.116	.728	.389	.717	1	1			Мо		.285	6	.138	.873	6		
Co	Pearson Correlation	055	.304	.770	.549	145	.542	2 .10	00	1		As		.238	6	.200*	.923	6	Mo_log	•
Fe	Pearson Correlation	.271	.500	.701	.358	.062	.682	.30	.826		1	Zn		.204	6	.200*	.923	6	Zn_log	6
Mn	Pearson Correlation	020	.437	.133	547	004	.101	21	.10	3 .53	37	Cu		.269	6	.199	.886	6	Co_log	8
Pb	Pearson Correlation	.807	.181	082	.445	176	.817	.75	50 .15	5 .44	19 .1	Со		.257	6	.200*	.881	6	Fe_log	9
Ba	Pearson Correlation	.701	.370	215	244	.260	.186	.47	44	7 .10	.5	Fe		.202	6	.200*	.959	6	Ti_log	3
**. Corre	elation is significant at the 0.0 lation is significant at the 0.05	01 level (2-tailed 5 level (2-tailed)	d). I.									Mn		.308	6	.079	.849	6	Vilag	2
	FNV	νΫρ	Rſ)								Pb		.331	6	.039	.855	6	·	
C		Co-fur	nded by the									Ba		.276	6	.169	.838	6	Mn_log	10
		Erasmus+ F of the Euro;	Programme pean Unior	0															Ba_log	12
																			As_log	5

1

RESULTS AND DISCUSSUTION

		Kc,	Zc,	lge	20,	EF,	RI,	HI				1	6	ED-97 9.69842	<u>ฯกՆՑԵՆԱՏՐԱՑԻԱՅԻ 7</u>	ֈԱՆՐԱԳՈԻՄԱՐԱՅ	ԴՆ ՅՈ ԻՅԱՆԻՇ	
		ł			Geoa	ccum	ulatio	n ina	lex (Ig	ieo)					EB-05 9 69842	EB-04	9 09493	EB-01 2 1931
	Cr	v	Мо	As	Zn	Cu	Со	Fe	Mn	Pb	Ва					5.51515		
EB-01	0.76	0.36	0.84	3.65	1.55	0.81	-0.50	-0.46	-0.32	4.16	-0.40							
EB-02	0.56	0.41	0.37	3.68	0.55	0.12	-0.58	-0.57	-0.34	2.80	-0.42					EB-03	9.49658	
EB-03	0.75	0.32	0.90	3.90	1.13	0.89	-0.58	-0.57	-0.39	3.15	-0.43		L	.ԵԳԵՆԴԼ	1	10.853		
EB-04	0.56	0.29	0.19	3.71	0.77	0.11	-0.69	-0.66	-0.34	3.09	-0.39		Պայմա	ւնական նշ	ջաններ			
EB-05	0.48	0.29	0.84	3.57	0.99	0.23	Igeo Cl	lass	Igeo va	alue		Contamination level	ւ լՆս	մուշառման բովյան պու	կետեր _րակ	10.17	48	N
EB-06	0.34	0.32	0.50	3.74	0.92	-0.39	0		Igeo ≤	≤ 0	Uncont	taminated	9.0	05 -		0125 0.025	0 05 4 1	
EB-07	0.48	0.29	0.84	3.57	0.99	0.23	1) < Igeo	0 < 1	Uncont contam	taminated/moderatel ninated	ly 📕		Zn-h Sthul		๚rซนฯ⊦ 8 _{E₽-06}	
EB-08	0.66	0.36	0.64	3.79	0.84	0.50	2		1< Igeo	0 < 2	Moder	ately contaminated					9 .83	
							3		2 < Igeo	o < 3	Moder: contam	ately/strongly ninated				EB-05 Q.98 EB-04 Q.55		EB-01 9.38
							4		3 < Igeo	o< 4	Strongl	y contaminated						
							5		4 < Igeo	o< 5	Strongl	y/extremely contami	inated				EB-02	
	ĺ	7					6		5 < Ig	eo	Extrem	ely contaminated				EB-03 93.29	522	
E	NV	PRO					The	e Geo	accui	mula	tion I	ndex (Iqeo) for	,	Պայս	մանական նշաններ			
	Erost of the	Co-funded by the mus+ Programme a European Union					ass	essir	ig cor	ntam	inatic	on levels in soil		•	Նմուշառման կետեր Աբովյան պուրակ 2.20 - 4 (Թույլատրեհ մանարդան)		EB-08	W E
															4 - 8 (Չափավոր վտանգավոր մակալ	0 0.0125 0. րդակ) լ լ	025 0.05 Կน์	V S

RESULTS AND DISCUSSUTION

	Cr	V	Мо	As	Zn	Cu	Со	Fe	Mn	Pb	Ва				
Max	178	91*	4.9	15.4	344	111	<u>16.6**</u>	41909	944	129	456				
Min	130	84	3	12.3	172.7	45.9	14.5	36467	883	21.6	426				
Mean	iean 157.5 86.5 4.1 13.6 238.5 77 15.9 38882 922.2 63.6 450.2														
Back.	ack. 70.1 45.8 1.75 0.69 78.4 40 15.6 38304 788 4.8 407														
MAC	MAC 90 150 132 10 220 132 5 - 1500 65 -														
Mean ge	Mean geochemical series														
As (19.7)-	Pb(13.1)	- Zn (3.0)- Mo (2	.3) - Cr (2	.2)-V, Cu	(1.9)- Mi	n(1.2)- Ba	a(1.1)-Fe,	Co(1.0)						
Minimun	n geoche	mical se	ries												
As (17.8)-	Pb(4.3)-	Zn (2.2)	- Cr (1.9)- V(1.8)-N	/lo (1.7)-	Cu, Mn(1.1)- Ba,	Fe (1.0)							
Maximul	m geoche	emical se	eries												
Pb(26.9))- As (22.3) [,]	- Zn (4.4)- Mo, C	u (2.8) - C	r (2.5)-V	(2.0)- N	ln(1.2)- E	Ba, Fe, Co((1.1)						
Mean sai	nitary hyg	ienic serie	es												
Co(3.2)-	Cr (1.8)-	As _(1.4) - I	² b, Zn (1	1.1)											
Min sanit	Min sanitary hygienic series														
Co(3)- C	Co(3)- Cr (1.4)-As (1.3)														
Max sani	itary hygie	nic series	;												
Co(3.3)-	Cr, Pb(2)- Zn (1.6	6)- As (1.9	5)				1							

Description of geochemical an sanitary hygienic indices of soil.

Radiological indices of soils of Abovyan Park

ENV

	RaEq	Hex	Hin	ODRA,	AEDE,	ELCR	AGED,
	Բք/կգ				մՉվ/Ժ		մՉվ/Ժ
Sample 1	80.5	0.22	0.28	40.3	0.05	1.73E-04	0.27
Sample 2	98.5	0.27	0.34	49.0	0.06	2.10E-04	0.33
Mean	89.5	0.2	0.3	44.6	0.05	1.92E-04	0.3
Global mean	370	1	1	59	0.07	2.90E-04	0.3

CONCLUSIONS

- ✓ The content of heavy metals in the soil of Abovyan Park in Yerevan was studied, and the Summary Concentration Index (SCI) for 8 samples fell in the range of 8-16, which according to the SCI scale corresponds to a low level.
- According to the anomaly coefficient (Kc), the background excess only in the contents of As and Pb. A maximum value of 22.3 was recorded for As in sample 3, and 27 for Pb in sample 1.
- ✓ The health risk assessment showed that in Abovyan Park the level of non-carcinogenic risk is high (> 4) for children and a medium (1-4) for adults.
- ✓ The natural radionuclides are in the accepted range for the soils of Armenia (UNSCEAR), and only the average activity of K-40 is slightly higher. The radiological indices, dose and excess lifetime cancer risk do not exceed the global average values. The artificial Cs-137 radionuclide was also found in the soil, the presence of which is also documented by other studies conducted in Yerevan.

Ecologycal passport of Yerevan Botanical Garden

Purpose

• Compile the ecological passport of the Yerevan Botanical Garden

task

- Geochemical survey and mapping of the Botanic Garden
- Identification of contaminants and sources of contamination in soil
- Identification of features of distribution of heavy metals and radionuclides in garden soil and road dust

The project implementation process. Implemented stages

Project implementation process. Further stages

Expected results

- Geochemical maps
 - Spatial distribution of chemical elements and radionuclides
- Geochemical evaluation.
 - Quantitative characterization of multi-element contamination
 - Primary pollutants of soil and dust
 - Other geochemical parameters
- Potential Environmental Risk Assessment
- Assessment of the radioecological situation

Interdisciplinarity

Environmental Monitoring and Measuring Devices

Ecological Cartography

Environmental Statistics

Environmental Geochemistry

Environmental Radiation Protection

THANK YOU !

ENV

Co-funded by the Erasmus+ Programme